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Outline 
• Energetic particles (EPs）and Alfvén eigenmodes (AEs) in fusion plasmas 

• Resonance condition, conserved quantity, and inverse Landau damping 

• Phase space islands created by particle trapping and higher-order islands 

• Nonlinear evolution of a bump-on-tail instability and frequency chirping 

• Kinetic-MHD hybrid simulation 

• Hybrid simulation for EP and MHD 

• Nonlinear MHD effects and zonal flow generation 

• Validation on DIII-D experiments (fast ion profile flattening and stiffness, 

electron temperature fluctuations) 

• AE burst and critical fast-ion distribution (profile resiliency) 
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Energetic particle confinement is important for 
fusion energy 

• Nuclear fusion: safe and environmentally friendly energy source in the next 

generation  

• Fusion reaction of deuterium (D) and tritium (T) in high temperature plasmas 

D +  T -> 4He (helium, 3.5 MeV) + n (neutron, 14 MeV) 

• Energetic He (alpha) heats the plasma 

• Confinement of energetic alpha particles are important for the sustainment 

of high temperature (>10keV) 



4 

Energetic particles in fusion plasmas 

• Alpha particle born from D-T reaction 

D+T -> He4 (3.5MeV) + n (14MeV) 

• Neutral beam injection (NBI) 

• Ion cyclotron heating (ICH) 

• Electron cyclotron heating (ECH) 

Large Helical Device (LHD) 
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Interaction between Alfvén eigenmodes (AEs) and 
energetic particles 

Energetic particles circulating 

inside the plasma interact with and 

destabilize AEs.  
Alfvén eigenmode (magnetohydrodynamic 

oscillations) in LHD.  
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Time evolution of Alfvén eigenmodes in  
an ITER steady state scenario 

Y. Todo and A. Bierwage,  

Plasma and Fusion Research 9, 3403068 (2014) 
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Is the interaction between EP and AE  
an important research subject in (plasma) physics? 

• This is a problem of inverse Landau damping  

• with MHD waves 

• in 3D magnetically confined plasma (complicated particle orbit) 

• with non-uniform spatial distribution (spatial distribution is important as 

well as velocity distribution) 

• extended with source and sink (open system, EP distribution formation 

process, steady and intermittent evolution) 
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INTERACTION BETWEEN EP AND AE 
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Resonance condition in toroidal plasmas (1) 

• When a resonant particle passes one round in the poloidal angle, the phase 

of the AE should change by a multiple of 2π.  

This gives the resonance condition: 

ω * Tθ – n * Δφ = L * 2π 

Tθ: time for the particle to pass one round in the poloidal angle 

Δφ: toroidal angle which the particle passes in Tθ  

L: integer 

• ω – n * ωφ – L * ωθ = 0 

ωφ = Δφ / Tθ 

ωθ = 2π / Tθ 

or   L= (ω – n * ωφ) / ωθ  

Y. Todo, Reviews of Modern Plasma Physics 3, 1 (2019) 

Resonance = When a particle passes 

one round in the poloidal angle, the 

phase of the wave is the same as that 

at the previous visit.  
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Resonance condition in toroidal plasmas (2) 

Large delta-f particles interacting with a TAE 

Vertical axis: (ω – n * ωφ) / ωθ  

Horizontal axis: ωφ  

[Todo and Sato, Phys. Plasmas 5, 1321 (1998)] 

Particles strongly interacting with an 

Alfven eigemode in the simulation. 

 

Integer => Resonance 
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Higher-order resonance 

• When a resonant particle passes K rounds in the poloidal angle, the phase of the AE 
should change by a multiple of 2π.  
This gives the higher-order resonance condition: 
K * (ω * Tθ – n * Δφ) = L * 2π 
Tθ: time for the particle to pass one round in the poloidal angle 
Δφ: toroidal angle which the particle passes in Tθ  
L: integer 

• ω – n * ωφ – (L/K) * ωθ = 0 
ωφ = Δφ / Tθ 
ωθ = 2π / Tθ 
or   L/K= (ω – n * ωφ) / ωθ  

• Higher-order resonance (fractional resonance) has no effect on linear stability, but 
may have substantial effects for finite amplitude wave.  
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Constants of motion in toroidal plasmas (1) 

• In axisymmetric (independent of toroidal angle φ) equilibrium (time-

independent) fields: 

 

• energy E 

• magnetic moment μ 

• toroidal canonical momentum Pφ=ehΨ+mhRvφ are constant along particle 

orbit  

(Ψ is poloidal magnetic flux, eh and mh are charge and mass) 
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Constants of motion in toroidal plasmas (2) 

• In the presence of a wave with angular frequency ω and toroidal mode 

number n: 

 

• μ is conserved if ω<<Ωh=ehB/mh 

• neither energy nor toroidal canonical momentum is conserved.  

• however, their combination E’=E- ω Pφ/n is conserved.  
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E’ is conserved during the wave-particle interaction in axisymmetric 
equilibrium (1) 

  

Energy and toroidal momentum evoution with 

equilibrium field Hamiltonian H0 and wave Hamiltonian H1

dE

dt
=

¶H

¶t
=

¶

¶t
H0 + H1( ) =

¶

¶t
H1

dPj

dt
= -

¶H

¶j
= -

¶

¶j
H0 + H1( ) = -

¶

¶j
H1

because 
¶

¶t
H0 = 0 (equilibrium) 

and 
¶

¶j
H0 = 0 (axisymmetric).
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E’ is conserved during the wave-particle interaction in axisymmetric 
equilibrium (2) 

  

Suppose the wave amplitude is constant, 

H1 is written in cylindrical coordinates (R,j ,z)

H1 = ˆ H 1(R,z)einj- iwt

dE

dt
=
¶H1

¶t
= -iw ˆ H 1(R,z)einj- iwt

dPj

dt
= -

¶H1

¶j
= -in ˆ H 1(R,z)einj- iwt

Then, 
dE'

dt
=

d

dt
E -

w

n
Pj

æ 

è 
ç 

ö 

ø 
÷ = 0 is satisfied. 
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Conservation of E’ suggests … 

  

In wave - particle interaction in tokamak plasmas, 

the conservation of E'  leads to 

dE

w
=

dPj

n
»

ehdy

n

Energy transfer between wave and particle (dE), 

and change in poloidal mangetic flux (dy)

(= radial location; spatial transport) are related to each other. 

This suggests qualitatively

for high w (such as ICRF) :  dE is important 

for low w and high n (such as ITG) :  dy is important

Energy transfer, wave heating 

Transport in radial direction 
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Why are AEs destabilized by energetic particles? (1) 

Q1: Can particles interact with ideal MHD modes 

with E// = 0?

A1: in toroidal plasmas, grad-B and curvature drifts 

-> v^  -> energy transfer through ehv^ ×E^

Q2: Slowing down distribution and Maxwell 

distribution have negative gradient in energy

           
¶ f

¶ E
< 0

This leads to the stabilization of AEs due to Landau damping.
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Why are AEs destabilized by energetic particles? (2) 

We should consider the derivative 

keeping E ' = E -
w

n
Pj =constant,

¶ f

¶E E '

=
¶ f

¶E
+

n

w

¶ f

¶Pj

The toroidal momentum is Pj = ehy + mhRvj .

If we apporixmate Pj @ ehy ,

n

w

¶ f

¶Pj

@
n

w

¶ f

eh¶y
=

n

w

1

ehRBq

¶ f

¶r

With Bq =
t rB

qR
   (B > 0,  t =-1 or 1) 

n

w

¶ f

¶Pj

@
n

w

tq

ehB

¶ f

r¶r
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Why are AEs destabilized by energetic particles? (3) 

Introducing "tempereature" T which replaces energy derivative

¶ f

¶E
= -

f

T
,  and w* =

tqT

ehB

¶ ln f

r ¶ r
 ,

¶ f

¶E E '

= -
f

T
1-

n

w
w*

æ

èç
ö

ø÷

When the radial gradient of f  is sufficiently large, 

the second term 
n

w
w*  makes 

¶ f

¶E E '

> 0 to destabilize the AE.

This also determines the sign of n /w ,  i.e. the toroidal propagation 

direction of the AE depending on the sign of 
¶ f

¶ r
. 
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Why are AEs destabilized by energetic 
particles? (4) 

• Fast-ion distribution function in a tokamak plasma:  

f（Pφ,E）, μ=const. 

• R0=1.8m, a=0.6m 

• B0=2T, q0=1.1, qedge=3.0 

• Deuterium, isotropic slowing-down distribution 

• Eb=80keV, Ec=30keV 

• Exp [-Pφ/0.4Ψ0] 

• White lines: E’=const 

• AE with toroidal mode number n=4, freq.=70kHz 

Co 

Counter 

Y. Todo, Reviews of Modern Plasma Physics 3, 1 (2019) 
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Why are AEs destabilized by energetic particles? (5) 

  

For n = 0 modes, the energetic particle spatial gradient 

does not destabilize the AE modes. 

However, when f is not isotropic in velocity space and 

depends on pitch angle variable L = mB/E, f = f (E,L)

¶f

¶E
=

¶f

¶E L

+
¶L

¶E

¶f

¶L E

The second term on the R.H.S. can lead to destabilization of 

n = 0 modes such as GAM.
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EP PHASE SPACE STRUCTURE WITH AE 
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Poincaré plot of energetic-ion orbits  
in the presence of an AE with constant amplitude  
(δB/B=2×10-3 at the peak) 

• An island structure is formed in the phase space.  

• This is the region of particles trapped by the AE.  

Particles have the same m  and E ' = E -
w

n
Pj.

[Todo+, Phys. Plasmas 10, 2888 (2003)] 
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Higher-order islands and stochastic regions 

n=3 δB/B=8x10-4 

many islands created by the 

higher-order resonances 

n=3 δB/B=2x10-3 

KAM surfaces disappear 

due to the overlap of the 

higher-order islands   

[Todo+, Phys. Plasmas 10, 2888 (2003)] 
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NONLINEAR EVOLUTION OF BUMP-ON-TAIL 
INSTABILITY AND FREQUENCY CHIRPING 
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Bump-on-tail instability 

• 1-dimensional electrostatic model 

 

• The bump in the high energy region 

leads to an inverse Landau damping 

We consider  

• Intrinsic wave damping (γd) 

• Collision (ν) = effective source and sink 
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• It was expected that once the instability is saturated by 

particle trapping, the AE will damp monotonically in time 

with the intrinsic damping rate.  

• However, the story was different when the AE is close to 

the marginal stability … 

Berk, Breizman, Pekker, PRL 76, 1256 (1996) 

Berk, Breizman, Petviashvili, Phys. Lett. A 234, 213 (1997), 238, 408(E) (1998) 

Berk et al., Phys. Plasmas 6, 3102 (1999) 
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Various types of time evolution of wave amplitude 
(1-dimensional simulation of bump-on-tail instability) 

𝛾d=0, 𝜈
=0 

 

particle 

trapping 

𝛾L~ 𝛾d, 𝜈=0 

 

frequency 

chirping 

𝛾L>> 𝛾d,  

𝜈 =0 

 

damping 

𝜈 >> 𝛾L- 𝛾d , 

 

steady 

state 

Y. Todo, Reviews of Modern Plasma Physics 3, 1 (2019) 
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Distribution function evolution  
(𝛾d=0, 𝜈=0, particle trapping) 

Y. Todo, Reviews of Modern Plasma Physics 3, 1 (2019) 
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𝛾L~ 𝛾d, 𝜈=0 
frequency chirping 

Distribution function evolution  Frequency spectrum evolution  

Y. Todo, Reviews of Modern Plasma Physics 3, 1 (2019) 
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Explanation of frequency chirping 

• Hole and clump are BGK modes. 

• The structure of hole/clump and the frequency shift should 

be consistent with each other. 

• The energy release due to the frequency chirping is 

balanced with the mode damping.  

 



32 

Simulation of energetic particle driven geodesic 
acoustic mode (EGAM) in LHD 

MHD velocity Plasma pressure 
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Frequency chirping and sudden excitation of a half-
frequency mode are reproduced by kinetic-MHD simulation 

Simulation 

LHD experiment 

[T. Ido et al., PRL (2016),  

M. Lesur et al., PRL (2016)] 

[H. Wang et al., PRL 120, 175001 (2018)] 



34 

KINETIC-MHD HYBRID SIMULATION 
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Initial value codes for the interaction between  
AEs and energetic particles 

Method AE modes EP Advantages Codes 

Kinetic-

MHD 

hybrid 

simulation 

MHD eq.  computational particles 

(or Vlasov eq. or 

gyrofluid eq.) 

nonlinear MHD effects M3D-C1 

FAR3D  

HMGC HYMAGYC 

MEGA  

XTOR-K 

HYM 

Reduced 

simulation 

AEs given by linear 

analysis 

computational particles computationally less 

demanding 

ORBIT  

HAGIS 

CKA-EUTERPE 

MEGA-R 

Gyrokinetic 

simulation 

computational 

particles for bulk 

plasma  

 

+ GK Poisson eq. 

and Ampere eq.  

computational particles 

(or Vlasov eq.) 

 

fully kinetic effects GTC 

ORB5 

EUTERPE 

GEM 

GYRO 

GYSELA 
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Can MHD model AEs correctly?   

• Comparison in electron temperature 
fluctuation profile between MHD analysis 
(NOVA) and experiment on DIII-D  
[Van Zeeland (NF 2009)].  

• “It is found that ideal MHD modelling of 
eigenmode spectral evolution, coupling 
and structure are in excellent agreement 
with experimental measurements.” 

 

• => MHD is fine to model AEs ! 

M.A. Van Zeeland et al.,  

Nuclear Fusion 49, 065003 (2009) 

Fig. 3 
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Verification between MHD and GK on AEs 

• “A linear benchmark for a toroidal 
Alfvén eigenmode (TAE) is done with 
11participating codes with a broad 
variation in the physical as well as the 
numerical models.”  
[Könies (NF 2018)]  

• A reasonable agreement of around 
20% has been found for the growth 
rates. 

• Another benchmark work was also 
conducted by Taimourzadeh (NF 
2019). 
 A. Könies et al.,  

Nuclear Fusion 58, 126027 (2018) 
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MEGA:  
Hybrid simulation for energetic particles and MHD  

• energetic particles (fast ions, alphas, energetic electrons):  

gyrokinetic particle-in-cell (PIC) simulation 

• bulk plasma: MHD simulation 

• the coupling between EP and MHD is taken into account through 

the EP current in the MHD momentum equation 

• Extensions:  

• neutral beam injection (NBI), collisions, ICRF 

• multi-phase simulation for fast ion distribution formation process in the 

slowing-down time scale  

• kinetic thermal ions 
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A single AE evolution and  
flattening of fast ion distribution function 

Y. Todo et al., PPCF 63, 075018 (2021) 

(top L) evolution of AE 

(bottom L) fast ion DF on a 

poloidal plane (R, z) 

(top R) fast ion DF in  

(Pᵩ, E) plane 

(bottom R) fast ion DF 

along an E’=const. line 

flattening 
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NONLINEAR MHD EFFECTS AND ZF GENERATION 

Y. Todo et al., Nucl. Fusion 50 (2010) 084016  

Y. Todo et al., Nucl. Fusion 52 (2012) 094018 
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Comparison between linear and NL MHD runs 
(jh’ is restricted to n=4) 

      

  

¶r

¶t
= -Ñ× (reqv) + n nD(r - req )

req

¶

¶t
v = -Ñp+ (jeq - ¢ j heq )´dB+ (dj -d ¢ j h) ´ Beq

+
4

3
Ñ(nreqÑ ×v) - Ñ´ (nreqw)

¶B

¶t
= -Ñ´ E

¶p

¶t
= -Ñ× ( peqv) - (g -1) peqÑ×v + n nD( p- peq )

+hdj × jeq

E = -v´ Beq + h(j - jeq )

j =
1

m0

Ñ´ B

w = Ñ´ v
      

  

¶r

¶t
= -Ñ ×(rv) + n n D(r - req )

r
¶

¶t
v = -rw ´ v - rÑ(

v2

2
) - Ñp + ( j - ¢ j h )´B

+
4

3
Ñ(nrÑ×v) - Ñ´ (nrw)

¶B

¶t
= -Ñ´ E

¶p

¶t
= -Ñ ×( pv) - (g -1) pÑ×v + n n D( p - peq )

+(g -1)[nrw2 +
4

3
nr(Ñ ×v)2 + hj × ( j - jeq )]

E = -v ´B + h( j - jeq )

j =
1

m0

Ñ´B

w = Ñ´ v

The viscosity and resistivity are =n=2×10-7vAR0 and =2×10-70vAR0 .  

The numbers of grid points are (128, 64, 128) for (R, φ, z). 

The number of marker particles is 5.2x105.   
41 

EP effects 
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Nonlinear MHD effect on AE saturation level 

βh0=1.5% 

Sat. Level (linear) ~ 1.5x10-3 

Sat. Level (NL)     ~ 1.5x10-3 

βh0=2.0% 

Sat. Level (linear) ~ 8x10-3 

Sat. Level (NL)     ~ 4x10-3 

The saturation level is reduced to half by the nonlinear MHD effect.  

2x10-3 

-2x10-3 

-1x10-3 

1x10-3 

0 

1x10-2 

-1x10-2 

-5x10-3 

5x10-3 

0 
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ZF Evolution and GAM Excitation 

After the saturation of the TAE 

instability, a geodesic acoustic 

mode (GAM) is excited. 

Evolution of TAE and zonal flow. 

The growth rate of ZF is twice that 

of the TAE.  
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Spatial profiles of the TAE and NL modes:  
Evidence for continuum damping of the higher-n (n=8) mode 

44 

ZF 



45 

Schematic Diagram of Energy Transfer 

n=4 TAE 

Thermal Energy 

Energetic Particles 

n=0 and higher-n modes  

Thermal Energy 

Drive 

Dissipation Dissipation 

NL coupling 

Linearized MHD 

NL coupled modes 
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FAST ION PROFILE FLATTENING AND STIFFNESS IN 
DIII-D EXPERIMENTS 

Y. Todo et al., Nucl. Fusion 54 (2014) 104012  

Y. Todo et al., Nucl. Fusion 55 (2015) 073020 

Y. Todo et al., Nucl. Fusion 56 (2016) 112008 
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Anomalous Flattening of Fast ion Profile on DIII-D 

• Anomalous flattening of the fast-ion profile during Alfvén-eigenmode activity 

• A rich spectrum of TAEs and RSAEs with reversed q profile in current ramp-

up phase 

[W. W. Heidbrink, PRL 99, 245002 (2007)] 

Fig. 3 Fig. 1 
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Multi-phase Simulation 
[Y. Todo, Nucl. Fusion 54, 104012 (2014)] 

• Hybrid simulation of energetic particles and an MHD fluid 

• Multi-phase simulation =  
• classical simulation w/o MHD perturbations for 2ms    +   

• EP-MHD hybrid simulation for 0.5ms;  performed alternately 

• reduce computational time to 1/5 

Classical Hybrid Classical Hybrid ・・・・
・・・・ 

2ms 0.5ms 2ms 0.5ms 

Classical Hybrid Classical Hybrid 

2ms 0.5ms ~10ms 

until a steady state or 

a limit cycle appears 

2ms 
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Comparison of fast ion pressure profiles (classical, 
multi-phase, exp.) 

• Fast ion pressure profile flattening takes 

place in the multi phase simulation.  

• The fast pressure profile in the multi-

phase simulation is close to that in the 

experiment. 

[Y. Todo et al., NF 55, 073020 (2015)] 
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Comparison of temperature fluctuation profile with  
ECE measurement for n=3 

• good agreement in spatial profile  

• good agreement in absolute amplitude 

• good agreement in phase profile 

[Y. Todo et al., NF 55, 073020 (2015)] 
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Resonance overlap in (R,E ) phase space 
 [blue (n=1), purple (n=2), green (n=3), orange (n=4), red(n=5)] 

PNBI=1.56MW 
PNBI=3.13MW 

PNBI=6.25MW PNBI=15.6MW 

Phase space regions trapped by AEs (=resonances).  

With increasing beam power [(a)->(d)], the resonance overlap covers the phase space.  

[Y. Todo et al., Nucl. Fusion 56 (2016) 112008] 



52 

AE BURSTS & STEADY EVOLUTION, 
DEPENDENCE ON PNBI AND SLOWING DOWN 
TIME 

Y. Todo, New J. Physics 18, 115005 (2016) 

Y. Todo, Nucl. Fusion 59, 096048 (2019)  
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• Alfvén eigenmode bursts take place with a roughly constant time interval. 

• 5-7% of energetic beam ions are lost at each burst. 

Alfvén Eigenmode Bursts in TFTR 

Results from a TFTR experiment  

[K. L. Wong et al., PRL 66, 1874 (1991)] 

 

Neutron emission:  

nuclear reaction of thermal D and beam D  

-> drop in neutron emission = fast ion loss 

 

Mirnov coil signal:  

magnetic field fluctuation  

-> Alfvén eigenmode bursts 

Fig. 4 
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AE Bursts have been observed in  
many tokamaks and stellarators/heliotrons 

• tokamaks 
• DIII-D [Heidbrink+ NF1991] 

• JT-60U [Kusama+ NF1999] 

• NSTX [Fredrickson+ PoP2006] 

• MAST [Gryaznevich+ NF2006] 

• stellarators/heliotrons 
• CHS/LHD [Toi+ NF2000] 

• W-7AS [Weller+ PoP2001] 

• TJ-II [Jiménez-Gómez+, 
NF2011] 

• Heliotron J [Yamamoto+ 
NF2017] 

 
AE bursts in LHD  

[Osakabe+, NF 46, S911 (2006)] 

Multiple AEs Fig. 9 
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Resonance overlap of multiple modes;  
evolution of bump-on-tail instability with two waves 

(top) EP distribution function for different moments 
with two waves.  
(bottom) Time evolution of the total wave energy.  
[Berk, Breizman et al., Phys. Plasmas 2, 3007 (1995)] 

Stairway  
distribution Fig. 7 

Fig. 6 
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Objective 

• Apply the multi-phase hybrid simulation 
to a tokamak plasma similar to the TFTR 
experiment for various beam power and 
slowing down time 

• time evolution (steady, intermittent, time 
interval of bursts) 

• maximum amplitude 

• degradation of fast ion confinement 

• fast ion profile resiliency (saturation of fast 
ion pressure profile) 

• Investigate the physical process of the 
AE bursts 

56 

Fast ion confinement degrades 

for higher classical fast ion beta.  
[Y. Todo, New J. Phys. 18, 115005 

(2016)] 
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Simulation condition  
based on the TFTR experiment 

• R0=2.4m, a=0.75m, B0=1T 

• beam injection energy 110keV (deuterium) 

• ni=2.8 x 1019 m-3 (deuterium) 

• q(r) = 1.2 + 1.8(r/a)2 

• beam deposition profile:  

exp[-(r/0.4a)2] x exp[-(|lλ|-λ0)
2/Δλ2] 

       λ=v///v, λ0=0.7, Δλ=0.3 

• slowing down & pitch-angle scattering 

       νd=(1/2)νs (vc/v)3 
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PNBI=10MW, τs=100ms 
(similar to the TFTR experiment) 

4.2M particles 
[Y. Todo, New J. Phys. 2016] 

for distribution function 

analysis   ->   67M particles 

 

• Good convergence in 

number of particles 

• Reduced numerical noise 
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Frequency spectra and  
spatial profiles of AEs 

59 

• AEs with n=1-5 are destabilized.  
• The largest amplitude modes 

are n=1-3.  
• The n=1 mode is an EPM, and 

the others are TAE.  

n=1, 37kHz 

n=2, 42kHz n=2, 56kHz 

n=3, 56kHz n=3, 64kHz 

Toroidal electric field (E

𝜑) in an (R, z) plane for 
each spectrum peak 
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Synchronization of multiple AEs and  
fast ion energy flux profile evolution 

m/n=5/3 

m/n=2/1 

m/n=4/2 

m/n=3/2 

• Synchronization of 

multiple AEs. 

• Time interval of the 

bursts is ~3ms.  

• Maximum amplitude 

is v/vA~3x10-3.  

=> close to the TFTR 

experiment. 

• Energy flux ~ 60MW 

(NBI 10MW) 

• Focus on the 

distribution function 

at t=43.5ms.  
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Collapse of stairway distribution and  
contribution of multiple modes to energy flux 

collapse  of 

stairway  

distribution 

contribution 

of multiple 

modes to 

energy flux 

f [a.u.] 
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Time evolution of f(Pφ, E) - fclassical(Pφ, E) for 
constant μ (counter-going) 

42.5ms 

43.5ms 

43.7ms 

43.9ms 

44.05ms 

44.2ms 
E 

Pφ 
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Fast ion profile resiliency 

(a) Fast ion pressure rises only by 

15% for doubled beam power  

= profile resiliency.  

 

 

(b) Profile resiliency is found also for 

fast ion distribution function just 

before the bursts.  
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Summary 

Injection of 

energetic particles 

(NBI) with  

a constant power 

Local flattening of 

distribution function 

due to Alfvén 

eigenmodes (AEs) 

= 

Stairway distribution 

Constant NBI -> 

gradual increase in 

distribution 

Critical distribution  Global resonance 

overlap 

= 

Trigger of AE burst 

Collapse of the 

distribution 
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Summary of AE bursts (1) 

• MEGA simulations of fast ion distribution formation process  

• for various beam deposition power (PNBI) and slowing-down time (τs).  

• With increasing volume-averaged classical fast ion pressure, the fast ion 
confinement degrades monotonically due to the transport by the Alfvén 
eigenmodes.  

• For PNBI=10MW and τs=100ms (similar to the TFTR experiment) 

• AE bursts (=synchronized sudden growth of multiple AEs) take place  

• with a time interval ~3ms and  

• the maximum amplitude vr/vA=3 x 10-3,  

• which are close to the TFTR experiment. 
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Summary of AE bursts (2) 

• Before the sudden growth (=AE burst),  

• multiple AEs grow to low amplitude 

• low-amplitude AEs locally flatten the fast ion distribution  

• formation of a stairway distribution 

• The stairway distribution =“critical distribution” where the further beam 
injection leads to  

• broadening of the locally flattened regions and their overlap 

• The overlap of locally flattened regions (=resonance overlap) brings about  

• synchronized sudden growth of AEs and global transport of fast ions 

• profile resiliency = almost the same fast ion pressure profile and 
distribution function for 5MW and 10MW beam power 

 



67 

Summary 
• Energetic particles (EPs）and Alfvén eigenmodes (AEs) in fusion plasmas 

• Resonance condition, conserved quantity, and inverse Landau damping 

• Phase space islands created by particle trapping and higher-order islands 

• Nonlinear evolution of a bump-on-tail instability and frequency chirping 

• Kinetic-MHD hybrid simulation 

• Hybrid simulation for EP and MHD 

• Nonlinear MHD effects and zonal flow generation 

• Validation on DIII-D experiments (fast ion profile flattening and stiffness, 

electron temperature fluctuations) 

• AE burst and critical fast-ion distribution (profile resiliency) 


