	Main authors	Abstract title
1	T. Barberis	Fast-ion distribution function affected by sawtooth oscillations
2	H. Bergström et al.	Coupling a kinetic description of relativistic electrons to the fluid equations in the non-linear MHD code JOREK
3	P.J. Bonofiglo et al.	Alpha Particle Losses in JET's DTE2 Campaign
4	M. Calvo-Carrera et al.	Gyrokinetic study of transport in the Scrape-Off Layer with SPARC-relevant parameters
5	G.H. DeGrandchamp et al.	Ion cyclotron emission dependence on the evanescent layer and fast ion density in the DIII- D tokamak
6	S. Dolui et al.	Stabilization of sawtooth instability by short gas pulse injection in ADITYA-U Tokamak
7	D. Kim et al.	Turbulence suppression by fast ions in the KSTAR internal transport barrier (ITB) plasma with a high fast ion fraction
8	E. Loránd	Study of current peak in tokamak disruptions using simulations
9	K. R. Gage et al.	First Fluctuation Measurements using Imaging Neutral Particle Analyzer on DIII-D
10	A. Galvan et al.	Numerical simulations of the Radio Frequency Plasma Interaction Experiment at ORNL using the hPIC2 and RustBCA codes
11	A. V. Garcia et al.	Alfvén eigenmode detection using Machine Learning Methods and CO2 Interferometer data on DIII-D
12	P. Halldestam et al.	Bayesian optimization of massive material injection for disruption mitigation in tokamaks
13	I. Hannachi et al.	Spectroscopic Diagnostic of Periodic Fields in Edge Plasmas
14	A. Jalalvand et al.	Towards Real-Time Control of Alfvén Eigenmodes at DIII-D Using Data-Driven Models and High-Resolution Diagnostics
15	A. Jansen van Vuuren et al.	Development of a scintillator based fast-ion loss detector for the Wendelstein 7-X stellarator
16	H. Järleblad et al.	A Framework for Synthetic Diagnostics using Energetic-particle Orbits in Tokamaks

17	B. Kyu Na et al.	Structure-preserving Hybrid Code, STRUPHY: Energy-conserving Hybrid MHD-driftkinetic Models
18	M. Rud et al.	Weight functions for orbit tomography based on projected velocities in constants-of-motion space
19	A. LeViness et al.	Development of synthetic diagnostics for Fast Ion Loss Detection systems in Wendelstein 7-X
20	S. Lukeš et al.	First ERO 2.0 simulations of liquid metal transport and re- deposition from divertor of COMPASS Upgrade
21	S. Mazzi et al.	Study of TAE effects on the global confinement in TCV L-mode plasmas
22	G. H. Park et al.	Optical collection lens design for KSTAR divertor Thomson Scattering
23	A. Paul et al.	Energetic particle modelling using simplified continuum Vlasov Maxwell model
24	J. Poley-Sanjuán et al.	The interplay between energetic particles and type-I ELMs in different collisionality regimes
25	A. Ponomarenko et al.	The investigation of Alfven eigenmodes excited by energetic particles using the Doppler backscattering method on the spherical Globus-M2 tokamak
26	G. Prechel et al.	Experimental Comparisons and Analysis of MAST-U Solid State Neutral Particle Analyzer Data with Synthetic Diagnostic Signals
27	B.C.G. Reman	
28	R. Rossi et al.	Equilibrium and Plasma Reconstruction using Physics-Informed Neural Networks
29	K. Shah et al.	Understanding argon impurity transport using visible and VUV spectroscopy in ADITYA-U Ohmic discharges
30	P. W. Shi et al.	Mitigation and suppression of energetic particles driven instabilities by radio-frequency waves on the HL-2a tokamak
31	K. Singh et al.	Low frequency Zonal Flow in ADITYA-U tokamak
32	J. Song et al.	Nonlinear saturation characteristics of ITG and TEM turbulence in a tokamak using nonlinear gyrokinetic simulations and a POD method
33	A.S Teimane et al.	Permeation, effective diffusivity, and solubility of gaseous tritium in thermal isolator materials considered for application in ITER

34	M. R. Thomas et al.	Entropy and conservation laws to predict the saturation amplitude for a kinetic instability in a collisionless plasma.
35	A. Valentini	Study of Fast Ion 3D Weight Functions for 2-step Gamma-Ray reactions: analytical and numerical validation
36	O. Vallhagen et al.	Runaway Electron Dynamics in ITER Disruptions with Shattered Pellet Injection
37	L. Velarde et al.	Velocity-space analysis of the first fast-ion losses measured in MAST-U using a high-speed camera in the FILD detector
38	T. Verdier et al.	Radially resolved thermal and fast-ion dynamics with collective Thomson scattering at ASDEX Upgrade
39	G. M. Yang et al.	Effect of ideal internal MHD instabilities on NBI fast ion redistribution in ITER 15 MA scenario
40	J. Arnaud	The impact of tokamak geometry on runaway electron formation in a disrupting plasma.
41	P. Balazs et al.	Atomic beam diagnostics and energetic particles
42	J. Hidalgo-Salaverri et al.	First measurements of a scintillator-based fast-ion loss detector in reversed Ip/Bt at the ASDEX Upgrade tokamak
43	N. C. Hurst et al.	Self-organization and confinement in tokamak plasmas with very low edge safety factor
44	I. Kenzhina et al.	Overview of activities in Kazakhstan related to study of beryllium and beryllium compounds
45	K. Król et al.	Fast electron dynamics in tokamak plasmas with high-Z impurities
46	J. Ortiz et al.	Analysis of the AE activity in the TJII periphery using Landau closure model
47	A. Orduña Martinez et al.	Visible camera tomographic inversion for RE studies under Ar and D gas injection on the COMPASS tokamak
48	P. Oyola et al.	Reduced fast-ion transport in NT plasmas in the presence of TAEs at TCV with 3D nonlinear hybrid kinetic-MHD MEGA code
49	E. Parr	Studying fast-ion populations in MAST-U plasmas using a Solid-State Neutral-Particle Analyser (ssNPA)

50	L. Herrera-Quesada et al.	Theoretical Study of Alfvénic Stability Optimization for TJ-II Stellerator
51	J. Rueda-Rueda et al.	First Measurements with an Imaging Neutral Particle Analyzer in the ASDEX Upgrade tokamak
52	O. Samant et al.	On the role of deeply sub-Alfvénic energetic ions in generating ion cyclotron emission from fusion and laboratory plasmas
53	B. Segalini et al.	Uniformity optimisation of the negative ion beam source for the ITER neutral beam injector
54	J. Walkowiak et al.	Numerical investigation of runaway electrons generation in tungsten-rich tokamak plasma
55	H. H. Wong et al.	Complex spatial structures of fishbone instabilities inferred with multiple diagnostics in MAST/-U
56	M. H. Y. Pratama et al.	On the Study of Grad-Shafranov Equation Solver using Physics-Informed Neural Networkson Non-homogenous Collocation Points
57	B. Zaar	Iterative Method for Including Parallel Dispersion for RF Waves in Two-Dimensional Axisymmetric Finite Element Models
58	D. K. Kim et al.	Investigation of multiple modes and their interaction generated by localized current drive onto the rational-q surface of the tokamak plasma
59	H. L. Kang et al.	Numerical study on the Wave instability by the Energetic Electron Beam
60	A. Khairi et al.	Spectroscopic investigation of plasma-material interactions on the ZaP-HD sheared-flow-stabilized Z-pinch device.
61	Y. Kotani et al.	Development of machine-learning-based interatomic potentials for sputtering simulation of silicon
62	Z. Lin et al.	Data-Driven Modeling of Impurity Transport in the Edge Plasma of Tokamaks
63	L. Liu et al.	Identification of core ion cyclotron instabilities on HL-2A
64	S. Mackie et al.	A High Resolution Neutron Spectrometer for Burning Plasma Studies on SPARC
65	M. H. Kim	Correlation between fast-ion Dα emissions and ion cyclotron harmonic emissions in KSTAR H-mode plasmas
66	E. Panontin et al.	Tomographic Reconstruction of alpha-particles source in D-3He plasmas at JET and prospects for SPARC

67	N. M. Pham	Analytical Evolution of Coupled Weakly-Driven Waves in a Dissipative Plasma
68	G. Player et al.	Orbit-Space Integrated Data Analysis of Fast Ions in the C-2W Field Reversed Configuration
69	Y. Qu et al.	Design and Development of Neutral Particle Analyzer (NPA) on HL-2A/2M
70	J. Ruiz Ruiz	Observation of fast-ion driven Alfvén-eigenmodes in JET and their effect on turbulence and thermal transport
71	P. Singh et al.	Charge particle transport across the magnetic field in plasmas containing negative ions
72	P. Techathanavanich	Neutronics Effects Study for Tritium Breeding Blanket of Fusion Reactor
73	R. Tong et al.	First observation of energetic-electron-driven instabilities at the ion cyclotron on HL-2A tokamak
74	L. Velarde et al.	Velocity-space analysis of the first fast-ion losses measured in MAST-U using a high-speed camera in the FILD detector
75	N. Bertelli	Interaction of Energetic Ions and Fast Waves in the Large Plasma Device (LAPD)
76	Y. Zou et al.	Energetic Particle Marginal Stability Profile for HL-2M Integrated Simulation based on Neural Network Module
77	X. L. Zhu et al.	Multiple mode-number instabilities induced energetic-ion transport in magnetic confinement plasmas
78	P. Porcu et al.	3D Plasma-Wall Interaction in the RFX-mod device
79	C. De Piccoli	Characterization of NBI energetic particle confinement in Divertor Tokamak Test plasmas
80	P. Krah et al.	Zooming into Vlasov-Poisson using a characteristic mapping method
81	P. Krah et al.	Model reduction for kinetic equations using the method of moments